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A previous approximation of the ac impurity hopping conduction in the high-temperature, low-concentra­
tion limit is extended to low temperatures and to highly compensated material. Only the real part of the 
conductivity is considered, and random distribution is assumed. The lengths f2>=?'maj = (47riVz>/3)~1/3, 
rT = e2/4wKkT (K is the dielectric constant) and rw are denned for the sake of simple expressions. The latter is 
a distance characteristic of the frequency, proportional to the radius a of the localized impurity state and 
only weakly dependent on other parameters. All the expressions for <r, written as functions of these variables, 
are explicitly proportional to a, to the imaginary conductivity KM, and for low compensations, to NA=Nmin. 
In addition to the distribution of spacings between impurities already considered in the high-temperature 
limit, the distribution in energies is now taken into account. The low-temperature treatment holds in the 
region where a can be expanded in TD/TT and ra/rT. Due to the existence of a zero-order term, a is almost in­
dependent of temperature at very low temperatures. At extremely low temperatures, however, where kT is 
much smaller than the resonance energy for a separation rw, a is proportional to the temperature. The low-
compensation and high-compensation results are basically identical at high temperatures. At very low 
temperatures, they differ mainly in the concentration dependence. At intermediate temperatures, the high-
compensation case is expected to interpolate smoothly between the two temperature extremes; the low-
compensation case is not. For both cases, the frequency dependence at very low temperatures is slightly 
more pronounced than at high temperatures, as is borne out by experiments. The following additional results 
are of interest for low compensation. At very low temperatures, the previously reported experimental result, 
that a is practically independent of ND, is accounted for. The magnitudes of the calculated and measured con­
ductivities are in very satisfactory agreement, particularly when compensated for the experimentally found 
NA°-8& dependence. It is shown that the results are valid up to much higher concentrations than the previous 
high-temperature treatment. At higher temperatures, the situation is less satisfactory. A tendency for 
pairing and an alteration of the radii a from those calculated by Miller and Abraham is necessary to get 
reasonable agreement. The radii have to be altered so as to make ap/aAs —1.14 instead of 1.05. To test the 
validity of the previously described model at intermediate temperatures, similarity relations based on 
statistical equivalence are developed. Comparison with data again necessitates the assumption ap/aA$ = 1.14. 
The results on the heavy compensation cannot be evaluated because of lack of experimental data. 

INTRODUCTION 

EXPERIMENTS that had been performed on the 
low-temperature conductivity of silicon1 and ger­

manium2 in periodic fields support the Mott-Conwell3,4 

model of the hopping conduction, inasmuch as the re­
sults can be sensibly explained1 by the use of this 
model. The experiments were, however, analyzed only 
in the higher temperature regions. While many features 
of the experiments could be theoretically reproduced 
(the dependences of the conductivity on frequency and 
majority and minority concentrations, and its order of 
magnitude at high temperatures), others remained un­
explained. This includes the somewhat surprising inde­
pendence of the conductivity on majority concentration 
at the lowest temperatures and the temperature de­
pendence itself. In fact, in the region where the treat­
ment of Ref. 1 should be valid, the conductivity is 
expected to be a decreasing function of the temperature. 
In practice, however, such a region was never reached. 
This work attempts to extend the analysis of Ref. 1 
to low temperatures. 

1 M . Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961). 
2 S. Golin, Bull. Am. Phys. Soc. 8, 225 (1963). After finishing 

this manuscript a more recent treatment by Dr. Golin [Phys. Rev. 
132,178 (1963)] came to our attention which is similar to the very-
low-temperature approximation of this paper. 

3 N. F. Mott, Can. J. Phys. 34, 1356 (1956). 
4 E. M. Conwell, Phys. Rev. 103, 51 (1956). 

The Mott-Conwell model for impurity conduction is 
based on a situation where all the extrinsic carriers 
are in localized states around impurities. The model 
allows for electrical transport by permitting the carriers 
to tunnel from a state localized around one impurity 
to a state localized around another, if the latter is 
vacant due to compensation. With such a model, there 
must be a difference between a steady conduction and 
a conduction in periodic fields. This is because a 
polarization current will exist1,5,6 when all impurities 
are not equivalent. The degree by which the impurities 
differ, therefore, will influence the behavior of the ac 
conductivity and must be an important feature of this 
investigation. There are two reasons why the impurities 
are not equivalent: variations in the distances from 
other impurities, and in the energy. The latter is a 
variation in Coulombic energy due to variations of 
distance from ionized impurities. The knowledge of the 
distributions of both the energies and the spacings 
between majority impurities is essential, therefore, for 
the treatment. Those distributions depend on how the 
impurities distribute themselves in the crystal. A ran­
dom distribution shall be assumed in this treatment. 

For sufficiently high frequencies, contributions to the 

5 M. Pollak, Proceedings of the International Conference on the 
Physics of Semiconductors, Exeter, 1962 (The Institute of Physics 
and the Physical Society, London, 1962), p. 86. 

6 G. L. Sewell, Phys. Rev. 129, 597 (1963). 
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conductivity from multiple hops can be neglected1 and 
only hops between pairs of impurities have to be con­
sidered. The high-frequency assumption imposes an 
upper limit on the concentration. It will be shown here 
that at low temperatures this limit is much higher than 
at the high temperatures treated in Ref. 1. If, in addi­
tion to the high-frequency approximation, it may be 
assumed that at the site of any pair the periodic field 
produced by all other pairs can be neglected, the total 
conductivity becomes a superposition of the conduc­
tivities of all pairs. This assumption is made to avoid 
undue complications despite some indications from 
Golin's experiments2,7 that it is not necessarily justified 
for germanium. We then may write 

a («) = So- (r,AE,ai)n (r,AE) 

= n <rfr,AE,a>)dp(r,AE). (la) 

A pair is specified by the spatial separation r and energy 
separation AE between the impurities that form it. 
The number of pairs at some value of the two variables 
is n(r,AE). This number may be replaced by the total 
number of carriers times the differential probability 
that a pair has the energy separation AEdz^dAE and 
spatial separation r^\z\dr. It turns out that the ac con­
ductivity is a selective function of both variables. Pairs 
are selected which have an energy separation smaller 
than kT and some very specific spatial separation.8 The 
analysis of Ref. 1, while taking account of the spatial 
distribution, assumed kT>AE for most pairs. The 
energy distribution thus was ignored. It is the purpose 
of this work to incorporate the energy distribution in 
the analysis and to obtain results valid also for lower 
temperatures. The results are compared with experi­
mental results reported in Ref. 1. We note, in passing, 
that Golin2 took an opposite approach in his work on 
^-type germanium, in trying to extract the distribution 
in energy separations from the experimental results. 

The expression for <r(r,AE,co) has been derived in 
Ref. 1. An equation is thus obtained which was the 
basis for most of this treatment and is copied here for 
convenience 

da(r}AE^) = ̂ dp(r,AE)NAr2 cosh~2(AE/2kT) 
Xu{orlT-l+uT)-leykT. (1) 

The various symbols are all explained in Ref. 1. The 
symbol a will be used to denote Rea-, because only the 
real part will be considered here. The notation ND^N™^, 
NA^Nmin is used in this report without committing it 
to w-type material. 

The temperature dependence enters, apart from the 
already established 1/T dependence, in three ways: 

7 S. Golin (private communication). 
^The latter is true only for the real part of the conductivity, 

which shall be the exclusive subject of this work. 

explicitly through the cosh-2 factor, through the tem­
perature dependence of r, as given by Eq. (13a) in 
Ref. 1, and finally by the possibility that dp in Eq. (1) 
may depend explicitly on temperature. The latter will 
take place in lightly compensated material (Nm*i/ 
i^min^l); that is, in cases where many majority atoms 
have other majority atoms between them and the 
nearest minority atom. In such cases, the probability 
that a pair of impurities is occupied by a carrier de­
pends on the temperature. Because of this and other 
differences between the light and heavy compensation 
cases, the two shall be treated separately. 

In order to be able to separate the different effects 
that may be relevant to the conductivity of hopping, 
the low-compensation regime shall be further divided 
into different temperature regions. The very low-
temperature region lends itself more easily to good 
approximations. While the high-temperature approxi­
mation assumed that all equally spaced pairs contribute 
equally to the conductivity, the very-low-temperature 
approximation forbids any pairs to contribute, except 
those which coincide in energy within kT. This allows 
for a relatively simple and accurate treatment because 
the distribution in energy is almost constant within a 
small kT. In addition the conditions necessary for this 
approximation are readily realizable, at least for silicon, 
and indeed, the calculated and the measured values and 
functional dependences of the conductivity agree very 
well at the very low temperatures, as already was 
briefly reported.9 

At higher temperatures the analytical treatment be­
comes more difficult. The contribution of the pairs with 
equal spacing but different energy separations cannot 
be represented either by a perfectly flat function of the 
energy separation, as it can at high temperatures, nor 
by an extremely selective function of energy separation, 
as is the case at very low temperatures. Instead, a 
more complicated function of energy has to be inte­
grated over the distribution in energy separation. The 
result is given by an expansion in the reduced energy 
separation. The first term must express the behavior at 
the very low temperatures. The rest is considered as 
one of three effects characteristic of higher tempera­
tures. The other two considered here are the variation 
with temperature of the relative occupation by a carrier 
of pairs with different energy separations, and the 
possibility that deep lying pairs which cannot con­
tribute at very low temperatures may start contributing 
at high temperatures. It turns out that none of the 
three effects is capable to account for experimental 
results. Only the last effect lends a functional depend­
ence to the conductivity, which is consistent with 
experimental results. However, the magnitude falls 
considerably short of the experimental one. To decide 
whether this failure is due to inadequate analysis, or to 
an inadequacy of the model at temperatures above the 

9 M. Pollak, Bull. Am. Phys. Soc. 8, 53 (1963). 
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FIG. 1. A schematic representation of the Mott-Conwell model 
in the neighborhood of the compensating impurity. The bottom 
part represents several majority atoms (circled) randomly posi­
tioned around the ionized minority impurity (minus sign). At very 
low temperatures, the majority which is at the nearest distance 
(fi) from the minority impurity is also ionized (plus sign). The 
dashed line represents a hop between it and another majority 
impurity a distance r away. The top part of the figure represents 
the Coulombic interaction between the two ionized impurities on 
a reduced energy scale. The symbols have the following meanings: 
rT=e2/4iTKkT; 2£ is the reduced energy separating the impurities 
involved in the hop; p is the distance from the minority impurity. 
The circles on the bottom part of the picture are equipotentials. 

very low ones, relations are derived between conduc­
tivities valid under certain similarity conditions. While 
these relations do not allow one to predict the con­
ductivity from basic principles as a full theory would, 
one can predict on their basis the behavior of the con­
ductivity of one sample from the measured behavior of 
the conductivity of another sample. A failure of such a 
prediction should be interpreted as an incompleteness 
of the model used, if the impurities are known to be 
distributed at random. 

LIGHTLY COMPENSATED MATERIAL 

The model that shall be used for the light compensa­
tion is presented in Fig. 1. The potential fluctuations 
responsible for the hopping model are produced by the 
ionized impurities. For low compensations, this effect 
can be adequately described by using the (mobile) 
majority ion to be in the Coulombic field of the nearest 
(immobile) minority ion, as shown in Fig. 1. Fields 
from other minority ions shall be much smaller because 
of larger distances and a large degree of cancellation 
from their associated majority ions. 

To avoid the necessity for simultaneous treatments 
of all the temperature effects, the explicit dependence 
of dp on temperature shall at first be ignored. This 
approximation is satisfactory at the very low tempera­
tures when the majority atom which is nearest to the 
minority has, except for occasional hops, a probability 
of almost unity to be ionized. Treating first the very 

low temperature region also allows the use of other 
approximations which are not valid for the higher 
temperatures, 

A. Very Low Temperatures 

Normal Effects. The treatment here varies from the 
treatment of Ref. 1 in the following two ways. The 
"hopping time" is left to depend on AE/T, and the 
expression is integrated over the distribution of AE and 
r. The latter is the distance between the two impurities 
exchanging the state of ionization. The energy separa­
tion between two majority atoms is a function of the 
distances that separate them from the nearest minority 
atom. Eq. (1) will be rewritten to contain these separa­
tions as variables instead of the energy separation. For 
consistency with Ref. 1, rationalized units are used here. 

AE/kT= ( 1 / n - 1 / V 3 ) e 2 / W r = (1/r!- 1/r 8)r r , (2) 

where 
r3= (ri2+r2+2rir co$<p) 1/2. (2a) 

the significance of the angle <p is apparent from Fig. 1. 
The distance rT} as defined in Eq. (2), is plotted in 
Fig. 2. 

It will be convenient for what follows to express the 
factor e2/kT, that appears in Eq. (1), as ATKTT. The dif­
ferential probability dp can be written as follows: 

dp(ryAE)-^dp(rhr\<p)dp(r1\r)dp(r1). (3) 

Here dp(r^) is the probability of finding a minority 
atom and the majority atom nearest to it separated by 
rizt^dri, dp(ri\r) is the conditional probability of find­
ing a majority atom a distance r^=.\dr from the ma­
jority that is at rx\ dp(rhr\ <p) is the conditional proba­
bility that, if two atoms are thus located, the relevant 
angle will have the value <p within \dy. If no forces act 
between the minority and majority impurities during 
the preparation of the material, dp(fi\r) shall be inde­
pendent of r% (as assumed in the following).10 If, how-

FIG. 2. A plot of 
the distance fy=e2 / 
4-rrKkT versus tem­
perature, for silicon 
and germanium. 

10 The assumption that the atom at n is a nearest neighbor to 
the minority atom makes a certain volume inaccessible to other 
majority atoms. The effect of this on dp{t\ \r) is neglected. 
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ever, such forces exist, as is the case in silicon or ger­
manium where the majority impurity is obtained by 
diffusion of lithium, this is no longer true. As experi­
ments demonstrate,11 interesting differences are observ­
able between such a case and a random distribution. 
In the following we shall always assume random 
distributions. 

# ( f i ) = VATTTMD exp(-^rr1WD/3)dr1 

= vi3ri2rD-d tx^{—ri/rD)Hri, (3a) 

dpOi\r) = dp(f) = vxWm-* exp(-r/rD)*dr, (3b) 

dp(rhr\(p) = v sin <pd<p, (3c) 

where v are normalization factors. Inserting this into 
Eq. (1) and integrating, 

<r(w) = a(r,AE,o))drdAE= I a(r,rh<p,o))dridrd(p 

f 3n2 / fA3 3r2 / r\z 

= / A^i expf ) vi— expf ) 
J rD

z \ fj>' rD
d \ rD/ 

RTT)] Xv $m<pNA^nMTr2 cosh" 

X-
r+ (WT) 

-dridrdcp. (4) 

The integration limits for r\ and r are from zero to 
infinity. This makes i>i=l. Some care is required in 
determining the integration limits for <p because it is 
easy to violate the assumption that ri is the distance 
from the minority to the nearest majority atom, with 
the result that the assumed distribution function for ri 
would no longer be valid. A limit has to be imposed on 
<p from Eq. (2a), so as to make r^ri. This leaves v 
undetermined for the time being. The quantity v is, 
of course, defined by v~1= J* sin (pd<p, where the limits 
are the same as in the main integral. 

To simplify the integration, a procedure similar to 
that employed in Ref. 1 is used here. It makes use of 
the fact that r depends exponentially on r. This causes 
[cor+ (cor)-1]-1 to be a strongly peaked function of r. 
The contribution to the conductivity thus comes from 
a very small region of r. If T<TD the other dependences 
on r are much slower and may be assumed to have a 
constant value. The condition r<rD is always imposed, 
except where explicitly stated otherwise (for reasons 
see Appendix of Ref. 1). Hence the integration over r 
of Eq. (4) is as follows: 

a(u) = f F(r)cS)l^r(r)+oi-1T-1(r)']-1dr 
0 00 

^F(rw,co) J (cor+co-1r-1)-1^=i7ra^(ra,,a)), 
Jo 

11 M. Pollak and D. H. Watt (to be published); M. Pollak, Bull. 
Am. Phys. Soc. 8, 485 (1963). 

FIG. 3. A plot of 
the hopping distance 
selected at frequency 
a), rm versus tempera­
ture. The quantity 
ru is plotted in units 
of a. 
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where ra is the r where (coT+ar"1r~1)~1 has a maximum. 
It is the same quantity as fmax in Ref. 1. The symbol rw 

is used here to indicate that it is responsible for a fre­
quency dependence. r«, apart from being frequency-
dependent, is also temperature-dependent, although the 
latter had been suppressed in Ref. 1. Applying the 
formula of Miller and Abrahams12 to silicon,1 and in­
cluding the fact that in the range of interest rw~ 10a (see 
Ref. 1), one obtains for ru (T in °K and co in cps), 

rja= 16.3+0.53 ln(r/co)+0.53 ln(£/tanh£), (5) 

where 
£=AE/2kT. (5a) 

The dependence of ru on £ is trivial since we can say, 
in anticipation, that the contribution to the conduc­
tivity will come from pairs with AE not larger than kT, 
i.e., where £/th% is almost unity, independent of £. The 
dependence of the logarithm is, of course, much smaller 
yet. We may therefore express ra as 

rw= [16.3+0.53 ln(r/a>)>. (6) 

The ratio of rja is plotted in Fig. 3. 
This accomplishes the integration over r, with the 

result that in Eq. (4) every r has to be replaced by rw, 
and [(wr)~1+cor]"'1rfr by \ira. This is equivalent to re­
placing [(cor^+cor] -1 by \irab(r—r„): 

a (o>) = j7r2NArD~6rTrjKO)a 

X In2 exp(-ri/fD)s cosh-^CirrCrr1-^"1)] 

Xv$m<pdrid<p. (7) 

To simplify the expression, we shall make the following 
substitutions: 

(8) 
ri—xr1; dri=—Xi 2dx\\ 

rz= xfl; and from Eq. (2a) sin^dcp^Xz^Xir^dxz; 

a(a))==%ir2NArD~6rTrjKwa / — #f3 exp(—XirD)~z 

X cosh~2[irr (xi—x^)~]vxj-zdxidxz; (9) 

v~1= I sm(pd<p=Xircr
1 I Xz~*dx3. (10) 

12 A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). 
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The new variables, xi and xz, are proportional to the 
energy on the impurities located at Y\ and at r$, respec­
tively, measured with respect to infinity, xi is propor­
tional to what one may call the "ionization energy." 
The range of integration over x± is from infinity to zero 
(corresponding to zero to infinity for ri) and for #3 such 
as to leave Yz ̂  r 1. The minimum value that r% can ob­
tain is |rw—ri|. This happens when <p=180°. If this 
value should be smaller than rh <p has to be cut off 

before it reaches 180° in such a way as to forbid r% to 
be smaller than Y\. In this case, the lower limit for r% 
will be r 1. If I ra—ri | is not smaller than rh no restriction 
has to be imposed on <p. The limit on r3 then is | rw—Y\ |. 
The upper limit is rw+r 1 for both cases. The boundary 
between the two cases is determined by f\—\r^ The 
situation is illustrated in Fig. 4. 

With the insertion of the limits as described above, 
the conductivity becomes 

a (w) = f iriNAirD~ 6rTrJaK0)\ #r 3 exp (—XifD)~zVa I %fz cosh~2Qrr (x\—Xz)~\dxzdxi 

+ / xrz exp(—XirD)~dvb I xz~
z cosh~2[%YT(xi—xz)~]d%zdxi . (11) 

J 2/rot J (rw+ri)"1 J 

With the aid of Eq. (10) va=\ and vb= (l+Jr^i)-"1. 
We now replace the quantity %rT(xi— xz) by £ in such a 
way that x\ (i.e., r\) remains constant. 

irT(xi—xz) = %; dxz=—2rT~1d%. (12) 

The meaning of the new variable £, is the energy dif­
ference AE normalized to 2kT, and is, therefore, 
consistent with the notation used previously in Eq. (5). 

The first integral in Eq. (11) represents the con­
tribution to the conductivity from those configurations 
in which a majority atom can be found at a smaller 
distance from a minority than Jrw; the second integral 
is the contribution from the other configurations. Apply­
ing the limits of x% to the variable £, we notice that £ 

• / sin 0 d 0) = 1 + 
2 r, 

r j < r/2 v = / sincD d0 = 2 

FIG. 4. A diagram explaining the limits of integration and the 
normalization integral for the cases where the nearest majority to 
minority impurity distance n, is larger (top) or smaller (bottom) 
than half the hopping distance. For the top configuration, the 
angle <p cannot be arbitrary. For <p><pm&xi the circle impurity 
would be closer to the minority impurity than the + impurity is. 
This is contrary to assumption. 

does not approach zero in the first integral. As large 
contributions to conductivity come only from small £ 
(because of the cosh-2 factor), the first integral shall 
not contribute appreciably to the conductivity. More­
over, with the condition YW<YD which was imposed so 
far on the whole treatment, it can be shown that the 
number of configurations with ri<^ra can be only a 
few percent. It is therefore legitmate to neglect the 
first integral in Eq. (11) and we obtain 

a (a>) = 1.5w2NArD~6rJaKu 

X / %f*(l+ir<oXi)~1 exp(—XirD)~ 
J 2/rw 

r r r /2r i ( l+r i r w
- 1 ) 

Jo 
(xi- 2rr-

1£)-8 c o s h - 2 £ ^ i . (13) 

Remembering that xi is proportional to the "ioniza­
tion energy," it is legitimate to neglect 2YT~1% as com­
pared to x\. The validity of this approximation is experi­
mentally verified by the fact that the dc conductivity 
is orders of magnitude smaller than the ac conductivity. 
This is particularly true at very low temperatures. With 
this approximation, 

a (co) = 1 .STPNA'TD'
 QrJaKO) 

-•f 
J2/( 

X / ^ r 6 ( l + 2 ^ ^ i ) _ 1 exp(—XXYD)-* 

X tanh[r r/2r i ( l+ r i n r 1 ) ] ^ . (14) 

At low temperatures the argument of tanh becomes 
very large because YT is inversely proportional to tem­
perature and Y 1 is almost never larger than YD [see, 
e.g., Eq. (3a)]. As a practical example, consider measure­
ments at 1 °K on silicon samples at frequencies and con­
centrations similar to those in Ref. 1. With the pessi-
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TABLE I. Comparison of the calculated and measured conductivities at very low temperatures. 

Sample 
No. 

9 
12 
16 
17 
18 
19 
20 
21 
22 
23 
24 
32 
36 
37 

l O " 1 5 ^ cm"3 

0.8 
0.8 
1.3 
2.6 
6.2 
6.6 
4.9 
2.1 
0.62 
1.2 

12.0 
1.1 
5.2 
5.2 

10sa cm 

21.1 
21.1 
20.0 
20.0 
21.1 
20.0 
20.0 
20.0 
20.0 
20.0 
21.1 
22.0 
22.0 
22.0 

108 rw cm 
1 kc, 1.1°K 

266 
266 
247 
247 
266 
247 
247 
247 
247 
247 
266 
272 
272 
272 

108
 TD cm 

257 
130 
275 
275 
218 
218 
241 
241 
312 
303 
180 
257 
250 
175 

a 

0.139 
1.06 
0.091 
0.091 
0.233 
0.181 
0.143 
0.143 
0.062 
0.068 
0.405 
0.149 
0.162 
0.465 

allzI(a) 

0.28 
0.33 
0.26 
0.26 
0.31 
0.30 
0.29 
0.29 
0.25 
0.25 
0.33 
0.29 
0.30 
0.34 

10 1 1 O-calc. 
1 kc, 1.1°K 

2.14 
2.5 
2.75 
5.5 

18.3 
16.0 
11.5 
4.9 
1.2 
2.4 

38.0 
3.5 

16.9 
19.0 

1U Cmeas. 
1 kc, 1.1°K 

2.3 
2.5 
2.0 
3.5 

12.6 
8.0 
5.8 
3.1 
1.1 
1.3 

22.0 
2.5 

10.1 
13.3 

mistic assumption ri—rD, the argument of tanh is 
about 20. Obviously, under these conditions, the tanh 
can be replaced by unity. To perform the remaining 
integration, we substitute 

Xl=rD-lZ-ll\ dxv=\rB-^Z-^HZ, (15) 

and obtain 

J a 

aw=rj2rD. 

(16) 

The integral / can be approximated for moderate 
a(rw^f£>) and for small a(ru<^rD). In the first case, 

in the second, 
/=W^=!a~1/3; 

7 « 1 . 

(17a) 

(17b) 

For intermediate cases, a numerical calculation was 
performed. The plot of allzI versus a which was obtained 
is shown in Fig. 5. Note that a is proportional to the 
majority concentration. A rather simple expression can 
be obtained if one defines a "concentration" Na, re­
lated to rw as ND is to YD. For moderate rJ2rD (moder­
ate majority concentration), 

<r(a)£*iir(NA/Na) (a/r„)«co; (18a) 

and for small rJ2rD (small majority concentration), 

*(a>)^Tr(NA/N„)(ND/N„y!*(a/r„)Ku. (18b) 

These are rather interesting relationships between the 
low-temperature conductivity and the imaginary con­
ductivity of the host material KM, i.e., for the loss factor 
tan5=Reo-(o))/[Imo-(co)+Kco]~a-(o;)/Kco. The factor a/ru 

is approximately 0.1 and is given more exactly by 
Eq. (6) or Fig. 3. I t does not depend either directly on 
the host material, or on the type of impurity. The 
"concentration" Nu for Si at low temperatures is ^10 1 6 . 
For samples described in Ref. 1, where most samples 
have NA^IO15, the conductivity should be of the order 
of one percent of aw. This, indeed, is the correct order 

of magnitude. Table I presents a more complete com­
parison between the theoretical and the experimental 
magnitudes. I t utilizes Eq. (16), together with the 
numerical calculation plotted in Fig. 5, for the calcu­
lated values of the conductivity. The sample numbers 
in the first column correspond to those used in Ref. 1. 
The two last columns of the table compare the calcu­
lated and measured conductivities at 103 cps and 1.1 °K 
in units of Or1 cm -1. The agreement tends to become 
worse with larger minority concentration. This can be 
at least partially attributed to the observed dependence 
of the conductivity on the minority concentration. I t 
was stated in Ref. 1 that a at low temperatures is 
proportional to NA0,S5 rather than to NA, as assumed 
in calculating results. Hence, at large values of NA, 
seems to fall short of o-caic.. 

The concentration dependence is given explicitly in 
Eqs. (18a) and (18b). At "moderate" majority con­
centrations, the conductivity is independent of the 
majority concentration, while at low concentrations it 
is proportional to NDIIZ- While the approximation for 
moderate concentrations is only a rough one, the 
numerical evaluation of Eq. (16) also shows that <r 
tends to be independent of ND for "moderate" con­
centrations. This is demonstrated by Fig. 5, where the 
ordinate is proportional to the conductivity and the 
abscissa to ND. The seventh column of Table I, which 

FIG. 5. A plot of a1/3I(a) versus a. The function a1 lzI(a) is pro­
portional to the conductivity while a is proportional to the ma­
jority impurity concentration. The dashed line is a plot of alf3 
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contains the entire dependence of the conductivity on 
the majority concentration, also demonstrates the lack 
of sensitivity of a on a, i.e., on the majority concentra­
tion. This bears directly on one of the problems posed 
in Ref. 1, which stated that a is observed to be inde­
pendent of ND at low temperatures. It was hypothesized 
that this resulted from possible attractions of the ma­
jority atoms to the minority atoms during crystalliza­
tion. It is demonstrated here that such an independence 
should exist in a completely random arrangement of 
impurities (i.e., no correlation between the position of 
minority atoms and majority atoms), as long as ND 
becomes comparable to iVw. This happens to be true 
for all samples of Ref. 1 (except, perhaps, samples 25 
and 26, which were doped by irradiation and as such 
did not yield interpretable results). It would be of 
interest to measure samples with low ND to see whether 
a tends to follow an ND1/S dependence for low concen­
trations. Unfortunately, for such concentrations, the 
conductivity at very low temperatures becomes too 
small to be accurately measured. 

It is worth noting that some detailed features of the 
experimental and theoretical investigation seem to agree 
at least qualitatively. In Fig. 6(a) of Ref. 1, one observed 
that the lack of dependence of a of ND at low tempera­
tures is more pronounced at low frequencies than it is 
at higher frequencies. As rw decreases with increasing 
frequency, rJrD is larger at low frequencies, and there­
fore, closer to the range of validity of Eq. (18a) than at 
high frequencies. From Fig. 7 of Ref. 1, and unpub­
lished data for higher frequencies for samples repre­
sented in Fig. 7, the same results are apparent. 

The frequency dependence (apart from the explicit 
proportionality with co) is contained in a/r^ and in N^ 
As No, is proportional to re-3, the implicit frequency 
dependence should be as of rj- at moderate concentra­
tions, and as of rj at low concentrations. In the fre­
quency range 102-105 cps, the dependence of rw on co 
can be well described as being proportional to co-0-05. 
The frequency dependence of the conductivity at very 
low temperatures should be between co0-85 and co0-9; the 
former term is approached by lightly doped material, 
the latter by more heavily doped material. These 
trends, for the lightly and heavily doped materials, are 
again visible in Fig. 6(a) of Ref. 1, and are actually a 
direct consequence of the previous remark made about 
Fig. 6(a). 

To compare the frequency dependence at very low 
temperatures with that at high temperatures, we ob­
serve in Eq. (15) of Ref. 1, that a at high temperatures 
is proportional to rj [remembering that the factor 
(14.8—J lnco) is actually rja}. The frequency depend­
ence, therefore, should be somewhat more pronounced 
at very low temperatures than it is at high temperatures. 
That this trend is obeyed in practice can be verified 
from Fig. 3 in Ref. 1, and plots made in a similar fashion 
from data on the other lightly compensated samples 
described in Ref. 1. 

There is no explicit temperature dependence at the 
very low temperatures; the only variation with tem­
perature is due to the variation of rw. Equation (6) 
shows that the dependence on temperature should be 
the same as on co-1. The very-low-temperature behavior 
of the conductivity should, therefore, be between T0-1 

and J015. 
Extremely Low Temperatures. It is surprising that the 

hopping conductivity, a phonon-induced process, ap­
proaches a finite value at very low temperatures when 
the slight temperature dependence of rw is disregarded. 
At extremely low temperatures it is, indeed, incorrect 
for the following reason. In Ref. 1, the expression for <r 
was derived from the basic Eqs. (7)-(9). At extremely 
low temperatures the contributions to the conductivity, 
as represented by this expression for a, come from pairs 
with extremely small AE. For such pairs, however, Eq. 
(9) of Ref. 1 is invalid. It assumes that an electron is 
located either on one or on the other of the impurity 
atoms, and that, therefore, the phonons in affecting a 
transition between states, transport the full charge of 
the electron from one atom to another. The actual 
transitions, however, occur between states as described 
by Eq. (II-3) or, approximately, by Eq. (II-9) of 
Ref. 12. The transition, accordingly, will be complete 
only when the resonance energy W is much smaller 
than AE (denoted A in Ref. 12). The validity of the 
above results therefore will apply only to situations 
where very little contribution comes from transitions 
with AE^W. Lowering the temperature, a point has to 
be reached ultimately when this is no longer true. To 
determine this temperature we notice from Eq. (1) 
that the cosh-2 factor permits only such pairs to con­
tribute to a whose AE is of the order of kT or smaller. 
Therefore, it is required for the validity of this treat­
ment that kT be larger than W. The latter has been 
calculated in Ref. 12. As we are interested primarily in 
silicon, we shall apply Eq. (11-19) of Ref. 12 to that 
material. 

T^=0.27(i?/cx)3^-^a6Xl0-2[eV]. (19) 

R is the distance between the two atoms and therefore 
should be appropriately replaced by r^. As rja~ 10, 
IF~0.1oK. It is therefore safe to apply the foregoing 
to all the measurements of Ref. 1. 

To derive the behavior of the conductivity at ex­
tremely low temperatures, i.e., where W>kT, we make 
use of the equation preceding Eq. (II-4) in Ref. 12. 
We can derive from this equation the transfer of charge 
occurring with a transition of an electron. (It should be 
noted that such a procedure is valid only for the real 
part of the conductivity. The imaginary part of the 
conductivity will probably get its major contribution 
from the polarization of the wave functions rather than 
from phonon-induced transitions.) For W^>A, the trans­
fer of charge is ^eSAE/W, S being defined by Eq. 
(II—7) of Ref. 12. In this range, therefore, the right-
hand side of Eq. (9) of Ref. 1, and consequently the 
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right-hand sides of the various equations for a of this 
paper^liave to be reduced by the factor ^SAE/W. 
Equation (13) thus becomes 

a (co) = iTT2NArD-QrJaKo)SkT/W 

X / Xi*(\+hraXiTl exp(-xirz>)-3 

J 2/rw 

/•rr/2ri(l+nrw-l) 

X / (xi- 2rT-1£)-*t coshr^d&Xi. (20) 
Jo 

Equation (20) reveals without actual integration, that 
the conductivity at extremely low temperatures is 
explicitly proportional to the temperature (apart from 
the temperature dependence implicit in ru) and goes to 
zero at 0°K. 

High Impurity Concentrations. The condition rn>Y<* 
was imposed till now to guarantee that hops of length 
rw occur by a direct transition without an easily acces­
sible impurity in-between posing as an intermediate 
state. This is why the distribution in Eq. (3b) includes a 
factor exp(—r/rD)z. The factor is the probability that 
no impurity atom exists in the volume, where it could 
thus effect the hopping rate between the atoms sepa­
rated by r«. The argument of the exponential is equal 
to this volume (approx. f7rf3), times the probability 
ND that an atom exists in this volume. The condition 
r^<rjy makes it possible to approximate the exponential 

Because of the range of integration, the argument of 
the exponential function inside the braces can acquire 
only positive values. The value of the braces, therefore, 
will be always smaller than unity. In fact, an appreci­
able contribution to the integral can be expected only 
from a region where the argument is not larger than 
unity. For low temperature this happens where t\ 
>^r0)(l — ra/rT). As the upper limit on r\ is \rm most of 
the contribution to the integral shall be from a region 
\r<a"r<a/rT wide, around \ru. F"or very small temperatures 
the region becomes very small. Unless the other ex­
ponential in Eq. (21) varies rapidly near %ru (i.e., 
^ V ^ D ) , we can approximate the integral by assigning 
the value Jrw to r\ in the rest of the integrand. Thus we 
obtain 

2rT-lf «(*r„)4 

JrJ2 

Xexp(~KAi>)V w V r -
2 / ( l+expZ)- i JZ 

Jo 

= (ln2/16)(rw
6 /V) exp(- | rwA 2>) 3 , 

by unity. At very low temperatures, most of the volume 
is inaccessible to a carrier because of energy considera­
tions. Only a slice of the volume, the thickness of which 
is kT, is of concern. The volume from which an impurity 
has to be excluded is, therefore, considerably reduced. 
The reduction factor can be shown to be approximately 
rD2/r?T. The factor exp(—r/rD)z should be replaced by 
exp (—r2/rrTD), and the condition rw < rD by ra < (rrf D)1 / 2 . 
To determine the permissible concentration, use can be 
made of Figs. 2 and 3. At 20°K, e.g., rr/r^ is found to 
be approximately 2.5. At 20°K, therefore, the concen­
tration can be (2.5)3~ 16 times higher than the original 
restriction allowed. The factor is, of course, even larger 
for lower temperatures. 

To treat the higher concentrations, one has to go 
back to Eq. (11) where the first integral has been 
neglected for the low concentration case. I t expresses 
the part of the conductivity due to the configurations 
of the type which is illustrated in the lower half of 
Fig. 4. As one increases the concentration, configura­
tions of this kind become more numerous and, therefore, 
may contribute appreciably to the conductivity at high 
enough concentrations. The rest of the contribution 
still comes from the second integral, and hence shall 
remain as given by Eq. (16). Using Eq. (12) and neg­
lecting again 2fr_1£ with respect to %i and replacing 
the upper limit of £ by <*>} one can write for the first 
integral of Eq. (11) 

2rT
 1 riAexp(—ri/rDy 

J r*/2 

X { l+exp[ f r ( r „ -2 f i ) / f 1 ( r „ - r 1 ) ]} - 1 df i . (21) 

where 

Z=rT(r„-2r1)/rJ. (22) 

The exponential function can be approximated by 1 
where the argument is smaller than 1, and by 0 else­
where. This part of the conductivity makes a contribu­
tion only at concentrations below those given by the 
condition rJD = |rw (for n-type silicon this is several 
times 1017 cm - 3). For such a condition, the total con­
ductivity becomes 

<T(u) = b*(NA/Na)(o/ra) 

X^la^I+0.0U(ND/Nuy(ra/rT)l. (23) 

The quantity allzI is defined in Eq. (16). Figure 5 
shows that for rz) = |fw (i.e., a = l ) the expression al/zI 
is approximately equal to 0.3. At such a concentration, 
(ND/NU)2=64:. The second term is then equal to 
0.9rw/Vr. Since at very low temperatures fw«^r, we 
conclude that in this region the configurations with 
fD<hra do not contribute appreciably to the conduc­
tivity even at high concentrations. 

2rT~l I rf exp(-n/rDyi j coshr*&&n = 
J ra/2 J rT(rw— 2ri)/2n(r0)— rj) 
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B. Low Temperatures 

This is the region where we must take account of 
contributions from pairs in which the ionized majority 
atom is not the nearest one to a minority atom. At such 
temperatures hopping may occur in regions higher up 
the potential well. The characteristics of the pairs 
formed from atoms that are at different energies in the 
well may be different. Therefore, dp(r,AE) of Eq. (1) 
now depends on temperature. Specifically, the distribu­
tion of AE depends on the position in the well (and thus 
on T), because of the decreasing steepness of the 
potential with increasing height. The distribution of r, 
on the other hand, is unaffected by the temperature, as 
long as random distribution of impurities exists. In 
addition to the treatment of the effect just mentioned, 
we have to revise some of the approximations used in 
the previous section. 

The model for this temperature range is shown in 
Fig. 6. The difference between this situation and that 
in the last section is that here the charge carrier may 
hop further away from the minority atom. Accordingly, 
the contributions from the various pairs have to be 
taken into account according to the fraction of the time 
that the carrier spends in them. This amounts to calcu­
lating the sum of the probabilities for the two members 

The two terms in the braces correspond, respectively, 
to the two terms in Eq. (24). The first term includes a 
delta function because of the assumption that a ma­
jority atom exists at ri. The second term does not in-

of the pair to be occupied by a carrier 

po={expL—rT(rr1—f2""1)]+exp[—rrCrr1—rr1)]}/ 
E f e x p C - r r C r r ^ r r 1 ) ] . (24) 

The sum is over all the majority atoms surrounding 
one minority atom. In a rigorous procedure, all possible 
arrangements of majority atoms surrounding a minority 
atom would have to be considered and weighed accord­
ing to their probability of occurrence. For simplicity 
we shall replace the sum in Eq. (24) by 

/ expl-rT(-rr1-p-1)2p(p)dPi 

where p(p) is the probability density of finding a 
majority atom at the position p. 

The probability dp(r,AE) must also be modified to 
include all three atoms that are of importance as shown 
in Fig. 6: 

dp(r,AE) -> pdp(ri)dp(ri\r%) 
X dp (r!,r21 r)dp (rhr2,r \ <p). (25) 

The meaning of the various differential probabilities is 
analogous to those in Eq. (3). Thus dp(ri) is given by 
Eq. (3a), dp(rhr2\r) by Eq. (3b), and dp(rhr2,r\<p) by 
Eq. (3c). The direct application of Eq. (3c) may be 
questioned because of the problems of the range of 
integration over the variable <p and of the normaliza­
tion. The procedure can, however, be applied in exactly 
the same manner. When r2 is sufficiently close to ri, the 
limited range of <p will again prevent the violation of 
the assumption that the nearest neighbor to the mi­
nority impurity lies at r\. Where such a danger does not 
exist, the prescribed procedure will prevent us from 
counting the same pairs twice. There is no analogy in 
Eq. (3) to dp(ri\r2). This is the probability of finding a 
majority atom at the distance (r2zk\dr2) from the 
minority atom. Since random distribution is assumed, 

dp (f 11 r2) = 3rD~h2
2dr2. (26) 

We now combine Eqs. (1) and (25) and integrate over 
r. This is done in the same way as in the last section; 
namely, by replacing [(cor)-1+wT]-1 by lwad(r— ra). 
The result may be written 

elude it because the nearest neighbor can only be the 
low-energy member of a pair. The symbol v% represents 
a normalization factor, from the denominator of Eq. 
(24). In accordance with the remark following that 

<T(a)) = %ir2NArD~*rTrJaKu / rx
2 exp(—r\/rD)zvz exp(—rr/fi) 

Jo 

X / {[y2
-15(ri—r2)+3rD-zr{\ exprT/r2+3rD~zr2 exp[(rr/V2) — 2£]} v J xrz cosh~2^x4^2^i• (27) 

J ri J (r2+rw)_1 
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equation, it may be written 

v% i exp(—rr/ri) / [8(r1-r2)+3rD-zr2
2~] 

Xexp(rT/r2)dr2. (28) 

The upper limit YA in Eqs. (27) and (28) is denned as 
[(4:/3)irNA]~1/d, but its magnitude is unimportant pro­
vided it is small enough that the integrand is cut off 
before it starts to increase at very large values of TA. 
To facilitate computation, Eq. (27) is written in the 
following way: 

<r (o)) = jTT2NArD~6rTrJaKO) 

r vh+3rD-zh 
XI xrz exp (—xirj))z—— rrrdoci, 

J a l+Snr3/!1 

7i1 = exp(—rTXi) / xr" exp(rTx2)dx2, 
(29) 

JTA-1 
II=xrl exp (—TTXI) I x2~

z exp (rTX2) vl2dx2, 

J 2 = 4 7 xfz(l+exp2^)~1dx4: 

By writing YT{XI—x2) = rj, and TT{X2—#4) = 2£, we can 

rewrite Eq. (29) as 

./o 

/ l 1 

/ l 

1 = /*r~1 / (xi—r?fr_1)~4 exp (—rj)dr), 
Jo 

prT(.rA~1— n - 1 ) 

= ^rVr""1 / ( # i — ^ r - 1 ) - 3 e xP{ — rDvI^dfi, 
./o 

(29a) 

• / . 

r2,/r2(l+r2rw~1) 

X(l+exp2{)-1<*(2£). 

The integral 70 is the same as the one that appears in 
Eq. (13). If the second term in the numerator and de­
nominator of the first of Eqs. (29) can be neglected, 
Eq. (29) becomes identical with Eq. (16). I t will be 
shown that these terms can be neglected at sufficiently 
low temperatures. All the integrals in Eq. (29a) have 
an upper limit proportional to TT, say rr/V0. For large 
TT (low temperatures), the difference between the inte­
grals integrated to their proper limit, and similar inte­
grals integrated to infinity, is of the order exp(—rr/Vo). 

This difference is negligible because terms varying as 
various powers of TT~1 are more important than the 
exponential at sufficiently low temperatures. The low 
temperature approximation, therefore, consists of ex­
tending the integration to infinity, and expanding the 
parentheses that contain rT in the four integrals of Eq. 
(29a) in powers of rT~1. The result is 

IQ==2rT-1xrzll+6(ln2)xr1rT-l+12^(2)xr2rT-2+ 

I1i==rT-1xr*(l+4:xr1rT-1+20xr2rT-2+ • • • ) , 

/ 1 = = 4 r r - 2 x r 7
7 { l n 2 + [ 6 1 n 2 + f f ( 2 ) > r V r - 1 

+ £ ( l n 2 ) r w , * r - H - - . . } . 

(29b) 

Here f is the Riemann's zeta function, and y 
= {\.-\-\rJrT)~l- Approximating (l+3rD~3iri1)~1 in Eq. 
(29) by l — ZrD~zI^-\ , we finally obtain for the con­
ductivity, to second order in ry -1 , 

(7(co) = i7rW^z)-Vfd
3a/cco[/3,i+(4.0/4>i+1.0/7,i)W^ 

+ (20/5,i+ 20I8,i)rD
2/rT

2+lAI7,2rDr„/rT
2'], (30) 

with 

h, •f. Z^{Z^+allz)~ke~zdZ. 

The leading term of Eq. (30) is identical with Eq. (16). 
The terms Iz,i, 14,1, Ih,i are due to the expansion of 7o 
only, and therefore, represent the conductivities of pairs 
in which the nearest neighbor to the minority is a 
member of the pair. The revision of the approximations 
used in the last section, therefore, becomes important 
before the occupation of higher lying impurities does. 
The actual importance of either effect is, however, 
doubtful. Equation (30) reveals that increasing powers 
of TD are involved as a consequence of, and together 
with, increasing powers of r^ -1. Therefore, the succes­
sive terms of the expansion become relatively more im­
portant for larger YD, i.e., for smaller concentrations. 
This would make the temperature dependence more 
pronounced for smaller concentrations. There is, at 
present, no experimental evidence for such behavior. 
Although only a few experiments have been performed 
to date, they all indicate that, throughout the tem­
perature range, the temperature dependence becomes 
more pronounced when the majority concentration is 
increased (see Figs. 6 and 7, Ref. 1). Such behavior is 
more reminiscent of the functional dependences of the 
second term of Eq. (23). We shall now examine whether 
the effects represented by that term can explain the 
observed behavior in a better way than the foregoing 
treatment. The approximations used to derive Eq. (23) 
must now be changed so that they will be valid at higher 
temperatures. Specifically, none of the integrand in 
Eq. (21) can be taken out of the integral sign. The 
other approximations, i.e., the replacement of the upper 
limit by infinity, approximating ri(ru—ri) by (rw/2)2, 
and neglecting 2rr£ with respect to x} will be used 
again. The expression exp(—ri/rn)z can be approxi-
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the polynomial 3> of 
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mated by (1 — Q.63r^/rD
z). This is a good approxima­

tion for fi^f£>. As the range of integration over r\ is 
from 0 to |rw, and |rw is assumed to be less than rp, 
the last approximation holds well. Using the substitu­
tion defined by Eq. (22), and replacing the upper limit 
of Z by infinity, we obtain for the first integral of 
Eq. (11) 

rJ$/32rT, 
where 

$ = {(0.692 - 0 . 0 5 4 8 i \ V ^ ) - (3.26-0 A52ND/Na) 

X (ru/rT)+ (10 .83- 227 ND/N„) (ru/rT)2 

- ( 22 .8 - 1S.7ND/N„) (r„/rT)*+ (23.3-64:.2ND/N<a) 

X(r./rTy+19SND/AUru/rTy~393ND/N^/rTy 

+39SND/N^/rT)7}. (31) 

This expression is not an expansion, but a complete 
polynomial. <£> is plotted in Fig. 7 as a function of TJYT 
for several values of ND/NU. 

The total conductivity may be written 

<r = f x {NA/NU) (a/r^KO) 

X[a^I(a)+(3/m)(ND/N^(rC0/rT)^l. (32) 

The first term in the square brackets represents the 
conductivity due to those configurations where the 
majority impurity, which is a nearest neighbor to the 
minority impurity, can have an equienergetic majority 
atom at the distance ra. The second term represents the 
conductivity of those where it cannot. As one expects, 
for ND/NU --> 0 and rJfT —•> 0, <3> approaches ln2, and 
Eq. (32) reduces to Eq. (23). Functionally, Eq. (32) 
has a desirable behavior. The conductivity increases at 
higher temperatures; the increase being more pro­
nounced for higher impurity concentrations or for 
larger Bohr radii. (This appears to be the case in Fig. 4 
of Ref. 1, for example.) When the second term is sig­
nificant, the frequency dependence decreases. This 
occurs because the second term is proportional to corw

9, 
i.e., to co0-55. The experimental data for the samples 
with higher impurity concentration show a power lower 
than 0.8 at higher temperatures. Unfortunately Eq. 
(32) cannot quantitatively explain the experimental 
data at temperatures above the very low temperature 
region. For example, the second term of Eq. (32) for 
sample 9, at 10°K and 100 cps is about 1.6X10"13 Qrl 

cm -1. This is much too small to account for the depar­
ture of the experimental conductivity from Eq. (23) at 

that temperature. I t is possible to increase the import­
ance of the second term by assuming a tendency for 
pairing. Such a tendency would bring the nearest-
neighbor impurities of opposite kind closer than when 
randomly distributed, and thus increase the number of 
configurations represented by the second term. Never­
theless, even if the pairing is large enough that the 
second term dominates the conductivity, Eq. (32) does 
not agree with the observations if the numbers for a 
quoted by Miller and Abraham12 are assumed to be 
correct. This is most readily demonstrated by trying 
to account for the behavior illustrated in Fig. 11 of 
Ref. 1. The conductivity of two samples with the same 
concentration, but a different kind of donor (i.e., with 
a different a) are plotted there. The conductivities at 
higher temperatures differ for the two samples by a 
factor of approximately 3. This difference is larger than 
can be accounted for with Eq. (32), using the Bohr 
radii from Miller and Abraham12; i.e., a difference of 
about 5 % between a for arsenic and for phosphorous 
in silicon. At a given frequency the value of rja does 
not depend on the kind of donor. Therefore the second 
term of Eq. (32) is proportional to a10. Hence the ob­
served difference between the conductivities of samples 
18 and 19 should be no greater than (1.05)10=1.6, i.e., 
60%. To give agreement between the data and Eq. 
(32), the difference between the radii a must be 14%. 
A 14% difference, incidentally, would also give reason­
able agreement at low temperatures, where the de­
pendence on a should be approximately a? [see Eq. 
(18a) or Eq. (42b)]. The frequency dependence at 
higher temperatures is also similar to that of the second • 
term of Eq. (32). For example, at 10°K and around 103 

cps, the experimentally observed dependence is co0-58. 
Unfortunately, evaluation of Eq. (32) for sample 18 

FIG. 8. An illustration of the similarity conditions. The circles 
represent conditions similar to those in Fig. 2. The squares repre­
sent a statistically equivalent situation with a concentration de­
creased by a factor 23. If the temperature is also decreased by a 
factor of 2, as indicated on the top part of the figure, the corre­
sponding impurities of the two systems are seen to have the same 
reduced energy. 
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at 10°K and 103 cps shows that the first term is ten 
times as large as the second. 

It must be concluded that, in contrast to the very-
low-temperature region, the behavior of the ac con­
ductivity at the higher temperatures is not understood 
in detail. This may be due either to the analytical diffi­
culties that exist in this range and the consequential 
crudeness of the approximations, or to a failure of the 
model itself. In an attempt to decide which of the two 
is the case, we develop some similarity relations in the 
following section. As indicated in the introduction, they 
do not yield the complete functional dependence of <r 
on the temperature, frequency, concentration, and kind 
of donor, but rather relate the dependence on one to the 
dependence on the others. Their value is in their 
generality. If a clear violation of the similarity rela­
tions is observed, a modification of the model is 
necessary. 

C. Similarity Relations 

The basic considerations that lead to the similarity 
relations are illustrated in Fig. 8, where part of the con-

where 
rD2/rDi=rT2/rTi= n. (33b) 

Equation (33a) is obtained by using Eq. (1). The dif­
ferential probability dp(ri,AE{) can be written 

dp(ri,AEi) = p(AEi/kT9r/rDi)d(r/rDi)d(AEi/kT), (34) 

because every configuration in one system is brought 
into a configuration in the other system with the same 
AE/kT and r/ri>. The functions [o)iTi+o)i~1rf1~]~1 are 
again replaced by fara8(r—rai). The 5 functions may 
be written 

5 (r - r„<) = rn^d (r/rD - rai/rD). 

Choosing rwi and rw2 such that r«i/fi>i=r«2A2>2 and in­
tegrating over r, we find 

NrA2p(^r(a/rD)nrTin2r(l}1
2n~1rDr1o}2 NA2 o>2 

s= = n2—. (35) 
NAip(&<*/rD)rTir*frDrl<*\ NAi «i 

This ratio relates conductivities at frequencies corre­
sponding to different rw, such that fW2=Woi. Using Eq. 
(6) we obtain the following relationship between coi 
a n d W2: 

co2=ir1ttineG-,l)ra/0=w-1coiwri(1-n)e30-8<1-n). (36) 

figuration from Fig. 6 is shown again as open circles. 
Two transformations are performed on the configura­
tion. In one, the distance of each atom from the mi­
nority is increased by a factor of 2. In the other, the 
value of TT/U is increased by a factor of 2. The results 
of the two operations are represented by squares and 
a full circle. The second operation corresponds to a 
decrease in temperature by a factor of 2. The first 
transformation may be interpreted as a decrease in 
concentration by a factor of 8 (NDI/ND*— [rm/fD-iJ 
= 23). For such a ratio of concentrations, the configura­
tions represented by the circles and by the squares 
will be equally likely to occur and hence equally repre­
sented in an ensemble.13 From the top part of Fig. 8, 
one may observe that corresponding items of the two 
configurations possess the same normalized energies. 
Therefore, the occupation probability of the corre­
sponding atoms will be identical for the two cases. 
Thus one can establish a one-to-one statistical corre­
spondence between the two cases. 

We are interested in finding the ratio s of the con­
ductivities of the two situations with identical r^/rr. 
The ratio s can be expressed as 

The similarity relations imply that if some material, 
with a majority impurity concentration given by TDX 
and minority concentration NAU exhibits a conduc­
tivity <TI at a temperature T\ and frequency «i, then a 
material with concentrations given by UTDI and NA% 
must have a conductivity (NA2/NAI)^I^2(^2/^I), at a 
temperature T2=Ti/n and frequency co2 given by 
Eq. (36). 

Measurements of Ref. 1 are evaluated, utilizing these 
relations, in the following way. The temperature de­
pendence of the conductivity cri(Ti) is plotted for a 
sample at a frequency coi. Another sample, with the 
same type of donor, is selected. The value of n is deter­
mined from the ratio of the majority impurity concen­
trations. From this, and the values of «i and T\> the 
frequencies co2, and temperatures T2 are chosen from the 
similarity conditions r^—nr^i, and rxi^nrTi. The con­
ductivity (72 is determined at these values of tempera­
ture and frequency by interpolating or extrapolating the 

13 Actually, in order that the relation between the configurations 
hold exactly as stated above, the minority concentration must 
undergo the same transformation as the majority concentration 
(particularly for more heavily compensated materials). However, 
this is of no practical importance if the functional dependence on 
NA can be accounted for separately (<TCCNA)» 

NA2 J dp(rhAE2)nrTi cosh~2(£2)r
2u2[a)2T2+o)2-W2-

12~1 

cr(rD2,rT2,o)2) J 
s= =— , (33a) 

<r(fDi,rTiy<ai) 

• / • 

NAI / dp(rhAEi)rTi cosh^ttiJ^wiCwin+wrVr1]-1 
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FIG. 9. The application of the similarity relations to experimental results of Ref. 1 for samples with (a) arsenic, (b) phosphorus, and 
(c) antimony donors. The plots are of O-(NDI,TI,O>I) (solid lines) and of \jr(n~3NmfTlT\,co2)/'n

2"]{m/'w2) (NAI/NA2)0M (points), plotted 
versus the temperature T\. The frequency wi was chosen to be 2irW cps, C02 is calculated from Eq. (36) to satisfy the similar­
ity conditions. 

measured data. The quantity o-2^~2(coi/co2) (NAI/NAZ)0'85 

is then calculated and plotted as a function of the tem­
perature T\. Note that the experimental dependence on 
the minority concentration is used. If the experi­
mentally observed behavior obeys the similarity rela­
tions, the two plots will be identical. Plots of this 
type are shown in Fig. 9 for arsenic-phosphorous-
and antimony-doped samples. Except for sample 23, 
the results are within 20%. Apart from some scatter, 
there is a trend for the more heavily doped samples to 
lie below the less heavily doped ones at low tempera­
tures, and above them at high temperatures. The dis­
crepancy at low temperature can be traced to a some­
what puzzling, relatively rapid decrease of the conduc­
tivity with temperature at high frequencies and very 
low temperatures. (This trend may be seen in most 
plots of a versus T in Ref. 1.) This is quite out of line 
with the similarity relations. I t could perhaps be the 
beginning of the effect described preceding Eq. (20). 
The discrepancy at low temperatures is minimized in 
Fig. 9 by obtaining the values of a at high frequencies 
and very low temperatures by extrapolation above 104 

cps, rather than by interpolation between 104 and 105 

cps. The remaining discrepancy may be the result of 
the assumption that the dependence on minority im­
purity is known separately and does not have to be 
included in the similarity conditions. This assumption 
is not completely justified, as the observed NA0'85 de­
pendence demonstrates. I t is, moreover, not clear that 
this dependence is followed above the very-low-tem­
perature region. In fact, the agreement between theory 
and experiment shown on Fig. 9 can be greatly improved 
at the high temperature end by assuming a propor­
tionality with NA- If the dependence on NA cannot be 
separated, Eq. (35) is valid only under the addi­
tional condition of constant compensation, NAI/NDI 
= NA2/ND2> The compensation, unfortunately, is not 
adjustable for given samples the way ra and YT are. An 

extensive comparison, therefore, is not possible. Only 
two of the comparable samples of Fig. 9 have the same 
compensation (19 and 20). Those, indeed, are very 
close to each other in their behavior, apart from a con­
stant displacement of 10%. This may not be significant, 
as the measurements of Ref. 1 were not intended for 
such detailed interpretation. 

The foregoing treatment can be used only for com­
parison of materials with the same kind of impurity. 
However, it is easy to incorporate a variation of a and 
thus to extend the similarity relations to cover ma­
terials with different donors. The changes required in 
the preceding treatment are the following: The right-
hand side of Eq. (35) has to be multiplied by a^/ai. In 
the exponents of Eq. (36), every n has to be multiplied 
by #i/#2; the n~l appearing as a factor in that equation, 
however, remains unchanged and so does the relation 
between T\ and T2. 

Samples 18 and 19 have been evaluated accordingly. 
The result is shown in Fig. 10. When the values for a,A» 
and ap calculated by Miller and Abraham12 are used, 
the discrepancy between the observed conductivities 
and the similarity relations is pronounced. The two 
can be brought into very good agreement, if one as­
sumes ap/a ii*=1.14. Notice that this result agrees very 
well with the one quoted towards the end of the last 
section. 

We conclude that the comparison of the similarity 
relations with the somewhat limited data presently 
available does not seem to call for a modification of the 
model for impurity conduction, but perhaps a modifica­
tion of the available numbers for the Bohr radii. 

The above relations, while quite general, are not very 
convenient for use because measurements at different 
frequencies are necessary to test the validity of the 
relations. I t would be preferable to use, instead of the 
ratio 5 defined by Eq. (31), a ratio of conductivities at 
the same frequency. This can be obtained formally as 
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follows: 

<r(<tii,rD2,rT2) 

<r(o>i,rDhrTi) 

<r((*l,rD2,rT2) O"(c02/D2/r2) 

<r(o)2,rD2,rT2) <r(o)i,rm,rTi) 
=s"-s. (37) 

The coefficient s" is essentially the frequency depend­
ence, as it is the ratio of conductivities of the same 
material (same TD)\ at the same temperature, and at 
different frequencies. Unfortunately, no general ex­
pression for s" is available; therefore the experimental 
situation cannot be alleviated. However, one may make 
use of the theoretical frequency dependences obtained 
thus far to test whether the various theoretical expres­
sions for the conductivity are consistent with the simi­
larity relations. For cases so far treated analytically, 
one may write s" as follows: 

j / /=(co]/co2)(r„i/r«2)p, (38) 

where p=A for high temperatures (Ref. 1), p=3 for 
very low temperatures and low concentrations [Eq. 
(18b)], p—2 for very low temperatures and moderate 
concentrations [Eq. (18a)], and p=9 for the second 
term at intermediate temperatures [Eq. (32)]. To 
facilitate the desired comparison, Eqs. (35) and (38) 
are written (excluding the NA dependence), 

<r(o)2,rD2ST2)/ru22U2=cr(cohrDhrTi)/ra>i2a)i, (35a) 

<r(u2/D2,rT2)/ro)2
po32==(T(oohrD2,rT2)/ra}i

pa)i. (38a) 

Equation (35a) means that, under conditions of con­
stant rn/r^ and constant rr/rw, the expression a/urj is 
constant. In other words, 

<T=r0?a)F(rD/ru},rT/r(a), (35b) 

where F is some function of rz>/rw and TT/TU only. Simi­
larly, from Eq. (38a), we may write 

o-=r^^(rDirT), (38b) 

and, from Eqs. (35b) and (38b), 

F (rD/r„,rT/r„) = rw
p"2$ (rD,rT). (39) 

The following form is consistent with Eq. (39): 

F(rD/r„,rT/r„) = T,KCK(rD/ra)x(rT/r„)*-*-x. (40) 

In certain cases, Eq. (40) is a necessary condition for 
Eq. (39) to be satisfied, and in every case, it is a suffi­
cient condition. Inserting Eq. (40) into Eq. (35b), 
we find 

cr= ZKCKcor^rD
KrT

2-p-K. (41) 

We rewrite the derived expressions as follows. The 
high-temperature approximation [Eq. (15) of Ref. 1] 
gives 

a = lTr2NAaKcorJrD~drT. (42a) 
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FIG. 10. The application of the similarity relations to samples 
with different kinds of donors. Sample 18 is phosphorus doped and 
sample 19 is arsenic doped with the same concentration (therefore, 
7\ = r 2 ) . The minority concentrations are also very close. The 
lines are plots of the conductivities of both samples at 100 cps. 
The points are plots of <r2(02Ai) (coi/co2) (NAI/NAZ), the subscripts 
2 refer to the phosphorus doped sample, 1 to the arsenic doped. 
The circles correspond to 02/01 = 1.05, the squares to 02/^1 = 1.14. 
The frequency coi is 27rl02 cps while co2 is adjusted to satisfy the 
similarity conditions. 

The very-low-temperature, moderate-concentration ap­
proximation [Eq. (18a)] yields 

<r=|7r2iVAdKooro,2. (42b) 

The very-low-temperature, low-concentration approxi­
mation [Eq. (18b)] gives 

a— ̂ Tr2NAdK(arJrD~1, (42c) 

and the term which may contribute at intermediate 
temperatures [second term in Eq. (32)] becomes 

(7= (3/12S)TT2NAaK0) 

XL {a irJ^rD-hT-^-^rJ^WD-hT- 1 - 1 ) , (42d) 

where at and fa axe given in Eq. (31). 
I t can be verified by inspection that Eqs. (42a) 

through (42d) are consistent with Eq. (40). All of the 
approximations to the ac conductivity which we have 
obtained, therefore, are consistent with the similarity 
relations. 

HEAVILY COMPENSATED MATERIAL 

In this regime, two of the assumptions made previ* 
ously have to be examined. (1) For heavily compensated 
material, the Boltzmann equation, as it appears in 
Eq. (5) of Ref. 1 [and on which Eq. (1) of this work 
is based], does not describe accurately the distribution. 
The reasons are pointed out in the remark following 
Eq. (5) of Ref. 1. (2) The assumption that AE can be 
derived from the nearest minority impurity only is 
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valid only for low compensation. Actually, for high 
compensation, there is no single nearest minority im­
purity. Therefore, the potential from a large number of 
impurities has to be considered. Moreover, some ionized 
majority impurities will be at a distance comparable 
with that of the nearby minority impurity atoms. 

The form of the Boltzmann equation appropriate for 
the heavy compensation case in the pair approxima­
tion is14 

/ l = W 2 l / 2 ( l - / 2 | l ) -Wi 2 / l ( l - / l | 2 ) . (43) 

Here / i and /2 are the occupation probabilities of 
impurity No. 1 and impurity No. 2 of the pair, re­
spectively, and / i |2 signifies the conditional probability 
that atom 2 is occupied if atom 1 is occupied. 

If the occupation of atom 1 and atom 2 are inde­
pendent events (that is, if fi\j=fj), Eq. (43) will be 
representative of a Fermi-Dirac distribution 

/ i = ^ 2 i / 2 ( l - / i ) - ^ i 2 / i ( l - / 2 ) . (43a) 

If, on the other hand, the occupation of one atom 
implies the nonoccupation of the other (i.e., j % = 0 as 
in the case of low compensation), then Eq. (43) becomes 

/i=W21/2—W12/1. (43b) 

This equation represents a Boltzmann distribution. To 
make Eq. (43) compatible with the condition fi\j=0, 
an impurity will be called occupied by a carrier either 
if it is ionized and ND/NA<0.5, or if it is neutral and 
ND/NA>0.5. This is analogous to transport by holes 
or electrons (respectively, for ^-type material). In view 
of the above, the number of carriers Nc is defined in 
the following way: NC=NA for ND/NA<0.S and Nc 
= ND—NA, otherwise. Equations (43a) and (43b) are 
limiting cases of Eq. (43). 

Writing /»=/»•<)+A/* with A///<£1 and expanding to 
first order in A/, and hence to first order in the electric 
field, we obtain from Eq. (43a) 

/ i = A / i = ^ 2 1 / 2 0 / 1 0 — W12/10/20" 

~ A/1[(/2 0+/i(f>2i+ (/10+/20-V12], (43c) 

and from Eq. (43b) 

/ i = A / i=^21 /20—^12 /10 - Afi(w2i+w12). (43d) 

The symbol fc is defined as (1—/»). Again, use has 
been made of the assumption that only hopping in 
pairs contributes significantly to the conductivity. This 
assumption is equivalent to the condition A/i= — A/2. 
The last two equations are of the same general form; 
namely, f=A—Afr~1 and hence the conductivity in 
both cases also has the same form, i.e., da(u>) = F(A) 
Xco(cor+co~1r~1)~1^ (dn is the number of like pairs in 
an appropriate ensemble). The coefficient multiplying 

14 Some confusion exists with respect to the notation ivy. In 
this paper it will represent the hopping rate from impurity i to 
impurity j , although in Ref. 1 this hopping rate was annotated 
by Wji. 

A/in Eqs. (43c) and (43d) is the inverse of the relaxation 
time, and hence determines the frequency dependence 
of the conductivity. It can be shown that the rate of 
relaxation associated with Eq. (43c) is always longer 
than the rate associated with Eq. (43d). The physical 
reason for this is that in the Boltzmann case every pair 
which has a carrier can contribute to the relaxation, 
while in the Fermi-Dirac case some pairs may possess 
two carriers and hence cannot contribute to the relaxa­
tion. The coefficient F(A) is also different for the 
Boltzmann and for the Fermi-Dirac cases. We have to 
conclude that the question of what correlation exists 
between the occupancies of two neighboring impurities 
has some bearing upon the conductivity. However, we 
shall neglect the effects of any tendency towards a 
Fermi-Dirac distribution for the following reasons. For 
cases of very high compensation where ND/NA is almost 
unity, fi\j in Eq. (43) is very small and Eq. (43b), and 
hence (43d), become very good approximations. (In 
other words, very few pairs will be doubly occupied.) 
To decide whether the Boltzmann approximation is 
justifiable in cases of not so large compensation, we 
compare the energy that is involved in repelling a charge 
at one site of a pair by a charge at the other site with 
the energy difference between a site and the "would be" 
Fermi level. While the latter quantity is typically of the 
order of the Coulombic energy at average impurity 
spacings, the former is approximately the Coulombic 
energy of pairs with a spacing r«, i.e., smaller than the 
average spacing. This means that the Boltzmann ap­
proximation should be a good one for most cases. 
Accordingly, we shall use Eq. (1) also for the high-
compensation region. 

Concerning the second point raised in the beginning 
of this section, we shall use an approximation for finding 
the distribution of AE, which may be somewhat crude, 
but which will help us to obtain an idea about the be­
havior of the conductivity in this region. The treatment 
will employ a result derived by Born which gives the 
distribution of the electric field due to a random dis­
tribution of monopoles.15 As long as there is no spatial 
correlation between the positive and the negative 
charges, the distribution of the electric field will be the 
same as if all charges were of one kind. This is so for 
the following reason: a configuration of positive charges 
will produce at any point a field identical to the field 
which would be produced by a configuration of negative 
charges with all coordinates centrally inverted through 
the point. If two such configurations have the same 
probability of occurrence, the sign of the charges does 
not affect the distribution. Consider now, that both 
kinds of monopoles exist. For a given arrangement of 
the positive charges, two centrally inverted configura­
tions of the negative charges will be equivalent if no 
correlation exists between the positive and negative 
charges. In such a case, therefore, the negative charges 

15 Max Born, Optik (Springer-Verlag, Berlin, 1933), pp. 444-455 
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can be replaced by positive charges and we are left with 
2NA— \~2NA charges of one type only. The correlation 
between the position of the charges of the two kinds 
will decrease as the degree of compensation is increased, 
and for large compensations we shall assume that the 
correlation is unimportant. 

We shall also assume that AE= err (e is the electric 
field), i.e., the field is constant over the distance r. This 
assumption is justified for the purpose of obtaining 
semiquantitative results, since the distances r that are 
of concern are smaller than the average distance. In 
order to use Born's result, we have to convert the dis­
tribution in e to a distribution in ex. The conversion is 
readily achieved with the result: 

W(er) = (€O/TT) J J x sin(2x)e-(^mdxde, (44) 
J €f JO 

where €o=4e14&VA2/3/47rK. 
The integrand is not absolutely convergent and hence 

the order of integration has to be preserved. Unfor­
tunately, the first integration cannot be performed in a 
closed form. I t is, however, bounded by the expressions 
f^x sm(ex)e-(*ox)2dx and fo°°x sm(ex)e-eoxdx, i.e., by 
TT1/2€ e x p [ - (€/2eo)2]/4e0

3 and 2€0€/(€0
2+€2)2. The second 

integration of these functions yields 

If '(6 r)= =27r1 /2exp[-(€ r /260)2] 
and Wf,(er) = eo2/(e0

2+e/). 

The two functions are similar in that they vary slowly 
for €r<^€0 and fall off rapidly to very small values for 
€r>€o. The function W(er) must behave similarly. 

To obtain the conductivity, we use Eq. (1) and write 

dp(r,AE) = dp(r)dp(r\AE), (45) 
where 

dp(r\AE) = W(AE/er)d(AE/er) 

= [W(AE/er)/er~]dAE (45a) 

and dp {r) is given by Eq. (3b). 
Combining Eq. (1), Eq. (3b) and Eq. (45), we obtain 

<r(o)) = 7rrTKO)NcrD-z / rz coshr2(AE/2kT)W(AE/er) 

X(cor+co- 1 r - 1 ) " 1 ^A£. 

Using the previous procedure to integrate over r, we find 

cr (co) = lir2arTo)NcTD~srJ 

X f coshr2(AE/2kT)W(AE/eru)d(AE). (45b) 

To elucidate how the conductivity depends on the 
variables, we observe that the integrand in Eq. (45b) 
consists of a multiplication of two functions, both of 
which are slowly varying for small AE and become very 
small for large AE. For the cosh-2 function, around the 

region of rapid decrease is AE^2kT=AEf, and for the 
W function around AE^WrN A2,ZI*™K=AE" . If AE' 
< AE", the cosh -2 function will dominate the integrand 
(case a) and if A E " < AE', the W function will dominate 
it (case b). If we insert some typical values for silicon, 
say r = 2 0 0 A , we obtain for NA=10U cm"3, AE" /* 
^ 2 ° K ; for A^=101 5 , AE"/k=10°K; for A^=10 1 6 , 
AE"/k=50°K. Case a will apply for temperatures 
much lower than these, and case b for temperatures 
much higher. Obviously, the latter is observable only 
for very pure material. To obtain the dependences on 
the various variables, we have to normalize W(er) 
properly, i.e., we require JL<x

+c0W(er)der=l. For that 
purpose we replace W(er) by a step function, finite 
between — eo and +€o and 0 elsewhere. The normaliza­
tion then is 

fw(e)de= 2e0v= 1, v= l/(2eQ)^L5K/(eNA
21). 

While this factor is only approximate, the functional 
dependence itself is probably quite accurate. With this, 
the conductivity for the low-temperature case is 

*(«) = C(Nc/NA) (ND/NU) (o/rA)m, (46a) 

and for the high-temperature case 

a (co) = C (Nc/N„) {N»/Nw) (rT/r») (a/r„)KW, (46b) 

where the C s are numerical constants. 
The result for the high-temperature region turns out 

to be identical with the result for the similar region for 
the light-compensation case (with Nc replacing NA)> 
This, of course, is as it should be, as the distribution 
in AE is neglected in this region. 

The low-temperature region has again a somewhat 
enhanced frequency dependence (o-occo0-85) and no ex­
plicit temperature dependence. The dependence on the 
majority concentration is much more pronounced here 
than in the low-compensation case. The physical reason 
for this is that an increase in the majority concentration 
does not push the distribution of AE toward large 
values, as it does in the low-compensation case. 

I t is expected that the transition between the ex­
plicit T° and T~l dependences in the intermediate 
temperature range is a smooth one in distinction to the 
low compensation case, where a is expected to reveal 
an explicit increase with temperature in the inter­
mediate temperature region. 

Unfortunately, no experiments with heavily com­
pensated materials are available, and thus the results 
of the last section cannot be tested at the present. 
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